Bringing Benefits of Digital Mammography and Radiography to More People1

Digital mammography and radiography systems are innovative technology solutions to the diagnostic and productivity limitations of conventional X-ray.

- Between 1995 and 2000, ATP co-funded a joint venture project with General Electric Corporate R&D and PerkinElmer, Inc.2
- The ATP provided $1.6 million and the companies provided an additional $1.9 million in cost share.
- The companies developed a low-cost manufacturing process for fabricating amorphous silicon detector panels for digital mammography and radiography systems.

Project Performance

- The new process, expected to be implemented by 2004, will reduce fabrication costs by approximately 25\% without compromising performance:
 - Less complex fabrication with fewer mask steps: 7 vs. 11
 - Fewer total process steps: 200 vs. 300
- The ATP-funded low-cost manufacturing process is expected to deliver:
 - Additional digital mammography and radiography systems are expected to be sold.
 - More patients will likely experience the benefits of digital mammography and radiography.
 - More health-care facilities will likely experience improved productivity and patient throughput.
- Total Net Public Benefit to the Nation (excludes benefits to funded companies):
- Public Return on ATP investment
 - Internal rate of return on ATP Investment: 69 percent to 77 percent
- Public Benefit per ATP dollar invested
 - Benefit-to-cost ratio for ATP Investment: 125:1 to 193:1

1 An ATP contractor study -- Dr. Thomas Pelsoci, Delta Research Company, \textit{Low-Cost Manufacturing Process Technology for Amorphous Silicon Detectors: Applications in Digital Mammography and Radiography}, (NIST GCR 03-844), 2003.

2 Formerly EG&G Reticon.
Broad Societal Benefits

- Benefits of digital mammography and radiography to medical facility users and patients are much greater than the benefits to the companies that produce them.

- Societal benefits include:
 - Increased throughput, reduced patient examination time, and reduced waiting time
 - Lower false positive rates, and therefore fewer unnecessary biopsies
 - Lower call-back rates for mammogram under- and over exposure, and therefore avoidance of unnecessary procedures
 - Reduced radiation exposure
 - Simplified record retrieval and record management of past mammograms
 - Assistance in use of computer-aided detection (CAD) for improved cancer detection
 - Reduced health disparities across population groups with greater use of telemammography and teleradiology networks.

Factsheet 1.B6 (Updated March 2003)