Contents

Preface iii

Acknowledgments ix

Executive Summary E.1

1. Overview 1.1

1.1 Project Objectives and Scope...1.2

1.2 Methodology ...1.4
 1.2.1 Constructing the Timeline of R&D Costs and Benefits...1.6
 1.2.2 Measuring the Impact of ATP on Social Returns..1.6
 1.2.3 Determining Medical Benefits to Patients..........1.7
 1.2.4 Estimating Changes in Health Care Costs...........1.10
 1.2.5 Estimating Private Return on Investment1.10
 1.2.6 Calculating Measures of Economic Return1.11

1.3 Case Studies of Seven ATP Projects in Tissue Engineering...1.12
 1.3.1 Human Stem Cell and Hematopoietic Expansion Systems ...1.14
 1.3.2 Structurally New Biopolymers Derived from Alpha-L Amino Acids ...1.15
 1.3.3 Disease Treatment Using Living Implantable Microreactors ...1.15
 1.3.4 Treatment of Diabetes by Proliferated Human Islets in Photocrosslinkable Alginate Capsules1.17
 1.3.5 Fabrication of Clinical Prosthesis from Biomaterials ..1.17
1.3.6 Application of Gene Therapy to Treatment of Cardiovascular Diseases ..1-18
1.3.7 Universal Donor Organs for Transplantations1-19
1.4 Summary of Specific Findings ..1-20
1.4.1 Summary of Results ...1-21
1.4.2 Sources of Project Variations1-24
1.4.3 Methodological Limitations1-25
1.5 Conclusions ..1-27

2. Methodology ..2.1

2.1 The Timeline of R&D Investment Costs and Benefits 2-2
2.1.1 The R&D Phase ...2-4
2.1.2 The Commercialization Phase2-4
2.1.3 The Production Phase ...2-6

2.2 Measuring the Impact of ATP on Technology Development2-7
2.2.1 ATP’s Acceleration of R&D ..2-7
2.2.2 ATP’s Impact on the Probability of Success2-9
2.2.3 Widening the Scope of an ATP Project2-12

2.3 Evaluating Medical Benefits to Patients2-13
2.3.1 Valuing Per-Patient Changes in Health Outcomes ..2-13
2.3.2 Determining the Number of Beneficiaries2-26

2.4 Estimating Changes in Health Care Costs2-30

2.5 Calculating Returns to Private Companies2-31
2.5.1 Determining R&D Investment2-32
2.5.2 Determining Costs of Commercialization and Production ..2-33
2.5.3 Calculating Revenues ...2-35
2.5.4 Estimating the Probability of Technical Success ...2-35

2.6 Calculating Measures of Economic Return2-36
2.6.1 Constructing the Time Profile of Benefits and Costs for Each Scenario ..2-37
2.6.2 Choosing Measures of Economic Return2-38
2.6.3 Choosing a Discount Rate2-40
2.6.4 Conducting Sensitivity Analysis2-42
2.7 Methodological Challenges and Limitations 2-42
 2.7.1 Characterizing New and Defender Technologies 2-42
 2.7.2 Modeling Medical Benefits 2-43
 2.7.3 Forecasting Market Penetration 2-44
 2.7.4 Estimating Company Costs and Revenues 2-44
 2.7.5 Calculating Social and Private Returns 2-45

3. Tissue Engineering Case Studies 3-1

3.1 Case Study Applications .. 3-1
 3.1.1 Human Stem Cell and Hematopoietic Expansion Systems 3-3
 3.1.2 Structurally New Biopolymers Derived from Alpha-L Amino Acids 3-10
 3.1.3 Disease Treatment Using Living Implantable Microreactors 3-17
 3.1.4 Treatment of Diabetes by Proliferated Human Islets in Photocrosslinkable Alginate Capsules 3-26
 3.1.5 Fabrication of Clinical Prosthesis from Biomaterials 3-32
 3.1.6 Application of Gene Therapy to Treatment of Cardiovascular Diseases 3-38
 3.1.7 Universal Donor Organs for Transplantations 3-45

3.2 Case Study Results .. 3-52
 3.2.1 Private and Social Return on Investment in ATP Tissue Engineering Projects 3-52
 3.2.2 Sources of Project Variations 3-58
 3.2.3 Methodological Limitations 3-59

3.3 Conclusions and Potential Improvements 3-62
 3.3.1 Developing, Applying, and Improving the Methodology 3-63
 3.3.2 Summary of Social Returns from Seven ATP Projects in Tissue Engineering 3-66

References .. R-1

Appendixes
A Market Diffusion Interview Materials, Summaries, and Results A-1
B Sensitivity Analysis ... B-1
Figures

Figure 1-1 Elements Determining Social Return on Public Investment and Social Return on Investment.. 1-5
Figure 1-2 Valuing Per-Patient Changes in Health Outcomes... 1-9

Figure 2-1 The Timing of Costs and Benefits from Investments in New Technologies... 2-3
Figure 2-2 The Total and Marginal Probability of Technical Success..................... 2-5
Figure 2-3 Impact of Acceleration on Social Returns.. 2-8
Figure 2-4 The Firm’s Optimal Level of R&D Effort... 2-10
Figure 2-5 Impact of ATP Funding on R&D Effort... 2-11
Figure 2-6 Chronic Disease Model of Health and Cost Impacts of New Technologies.. 2-15
Figure 2-7 Acute Illness and Injury Model of Health and Cost Impacts of New Technologies.. 2-17
Figure 2-8 The Classic Diffusion Curve... 2-27
Figure 2-9 Bass (Mixed-Influence) Diffusion Model ... 2-27
Figure 3-1 Cancer Diagnosis Model.. 3-42
Tables

Table 1-1 Overview of ATP Projects Included in this Study 1-13
Table 1-2 Expected Social Return on Public Investment: ATP Projects in Tissue Engineering for a Single Preliminary Application 1-21
Table 1-3 Social Return on Investment and Social Return on Public Investment: ATP Projects in Tissue Engineering for a Single Preliminary Application ... 1-22
Table 1-4 Impact of ATP Funding on the Development of Medical Technologies for Seven Tissue Engineering Projects 1-23
Table 1-5 Composite Private Returns: ATP Projects in Tissue Engineering for a Single Preliminary Application 1-24

Table 2-1 Comparison of QALY Utility-Weights for Different Health States .. 2-23
Table 2-2 Alternative QALY Values .. 2-25

Table 3-1 Sources of Outcome and Cost Data .. 3-2
Table 3-2 Model Assumptions for “Human Stem Cell and Hematopoietic Expansion Systems” ... 3-4
Table 3-3 Expected Market Penetration of Aastrom’s CPS 3-8
Table 3-4 Model Assumptions for “Structurally New Biopolymers Derived from Alpha-L Amino Acids” ... 3-11
Table 3-5 Number of Patients with Injuries Repairable with Integra’s Fracture Fixation Materials ... 3-15
Table 3-6 Number of Patients Treated with Integra’s Bioabsorbable Fracture Fixation Products ... 3-15
Table 3-7 Costs of Materials and Procedures for Fracture Fixation 3-15
Table 3-8 Model Assumptions for “Disease Treatment Using Living Implantable Microreactors” .. 3-18
Table 3-9 Annual Health States, QALYs, and Cost for the Diabetes Model ... 3-21
Table 3-10 Transition Matrixes for the Diabetes Model: Conventional Treatment ... 3-22
Table 3-11 Expected Market Penetration for BioHybrid's Diabetes Treatment ... 3-24
Table 3-12 Model Assumptions for “Treatment of Diabetes by Proliferated Human Islets in Photocrosslinkable Alginate Capsules” .. 3-28
Table 3-13 Expected Market Penetration for the VivoRx Diabetes Treatment Technology ... 3-30
Table 3-14 Model Assumptions for “Fabrication of Clinical Prostheses from Biomaterials” .. 3-33
Table 3-15 Expected Market Penetration for the Tissue Engineering's ADMAT Material for Repairing the ACL 3-36
Table 3-16 Model Assumptions for “Application of Gene Therapy to Treatment of Cardiovascular Disease” 3-39
Table 3-17 Expected Market Penetration for Progenitor's Tumor Imaging Technology ... 3-43
Table 3-18 Model Assumptions for “Universal Donor Organs for Transplantation” ... 3-46
Table 3-19 Expected Market Penetration of UniCraft Hearts .. 3-49
Table 3-20 Expected Social Return on Public Investment: ATP Tissue Engineering Projects for a Single Preliminary Application........ 3-52
Table 3-21 Social Return on Investment and Social Return on Public Investment: ATP Tissue Engineering Projects for a Single Preliminary Application ... 3-53
Table 3-22 Impact of ATP Funding on the Development of Medical Technologies for Seven Tissue Engineering Projects 3-55
Table 3-23 Impact of Acceleration Effect on Social Return on Public Investment .. 3-55
Table 3-24 Composite Private Returns: ATP Projects in Tissue Engineering for a Single Preliminary Application 3-56
Table 3-25 Limitations of the Health Benefits Models .. 3-60